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Abstract: Respiratory viral infections constitute the most frequent reason for medical 

consultations in the World. They can be associated with a wide range of clinical 

manifestations ranging from self-limited upper respiratory tract infections to more 

devastating conditions such as pneumonia. In particular, in serious cases influenza A leads 

to pneumonia, which is particularly fatal in patients with cardiopulmonary diseases, 

obesity, young children and the elderly. In the present study, we show a protective effect of 

the low-molecular weight compound Ingavirin (6-[2-(1H-imidazol-4-yl)ethylamino]-5-

oxohexanoic acid) against influenza A (H1N1) virus, human parainfluenza virus and 

human adenovirus infections in animals. Mortality, weight loss, infectious titer of the virus 

in tissues and tissue morphology were monitored in the experimental groups of animals. 

The protective action of Ingavirin was observed as a reduction of infectious titer of the 

virus in the lung tissue, prolongation of the life of the infected animals, normalization of 

weight dynamics throughout the course of the disease, lowering of mortality of treated 

animals compared to a placebo control and normalization of tissue structure. In case of 

influenza virus infection, the protective activity of Ingavirin was similar to that of the 

reference compound Tamiflu. Based on the results obtained, Ingavirin should be 

considered as an important part of anti-viral prophylaxis and therapy. 
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1. Introduction 

Respiratory viral infections constitute the most frequent reason for medical consultations in the 

World. They can be associated with a wide range of clinical manifestations ranging from self-limited 

upper respiratory tract infections to more devastating conditions, such as pneumonia. Therefore, the 

prevention and control of these infections remain major clinical goals. Currently, there are approximately 

200 known respiratory viruses that can be grouped into one family of DNA viruses (Adenoviridae) and 

four families of RNA viruses (Orthomyxoviridae, Paramyxoviridae, Picornaviridae and Coronaviridae). 

The influenza A virus (IAV) is a highly infective agent that causes acute pulmonary diseases. 

Outbreaks of highly pathogenic influenza virus infections and the appearance in 2009 of a new 

pandemic IAV have triggered renewed interest in influenza research. As of May 2010, more than  

214 countries and overseas territories or communities have reported laboratory confirmed cases of 

IAV H1N1 2009, including more than 18,097 deaths [1]. Antiviral drugs occupy an important niche in 

the management of this disease [2,3]. They target virus-specific components and are an effective 

treatment when administered at the early stage of infection or soon after virus exposure [3]. 

Two main classes of anti-influenza drugs are currently accepted for chemotherapy of IAV. Derivatives 

of adamantane (amantadine and rimantadine) target the M2 ion channel of IAV and are not effective 

against influenza B virus [4]. Moreover, the rapid emergence of drug-resistance among influenza viruses 

since the mid-1990s have greatly compromised the effectiveness of these compounds [5]. All of the 

pandemic H1N1 viruses tested so far also appear drug-resistant [6]. 

Inhibitors of neuraminidase (NAIs, oseltamivir, zanamivir and peramivir) have a wider spectrum of 

activity that include both influenza A and B viruses [7]. Nevertheless, since 2007 rapid emergence and 

transmission of drug-resistant viruses have been observed [5,8,9]. Several strains resistant to NAIs 

were also isolated of pandemic H1N1 virus [10]. There is, therefore, a need both for identifying new 

and effective antivirals and for monitoring the susceptibility of circulating viruses to anti-viral 

compounds used in clinics. 

Paramyxoviruses include important viruses associated with upper and lower respiratory tract 

infections in humans. Among them, human respiratory syncycial virus (RSV), and human parainfluenza 

viruses (HPIV) should be noted. 

RSV is a major cause of lower respiratory tract disease in premature babies (≤35 months of 

gestation), infants less than 6 months old, and elderly institutionalized subjects. The outcome of RSV 

infection usually involves mild upper respiratory tract infections; however, more severe conditions, 

such as pneumonia and bronchiolitis occur in 25–40% of children. Approximately 1% of RSV-infected 

infants require hospitalization [11,12]. 

Four distinct serotypes of human parainfluenza viruses have been described [13]. These viruses can 

cause upper respiratory tract diseases in individuals of all age groups, although young children between  

6 months and 3 years present more severe diseases [13]. 
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Adenoviruses (AdV) are non-enveloped DNA-genome viruses. Despite multiorgan tropism, some 

types of AdV have a preferential tropism for the respiratory tract and can cause a wide range  

of respiratory symptoms, including coryza, pharyngitis, tonsillitis, bronchitis, and pneumonia. In 

general, AdV infections are mild or self-limited and resolve within two weeks without long-term 

complications. However, these viruses constitute an important cause of mortality and morbidity in 

immunocompromised patients including neonates and bone marrow transplant recipients [11]. 

Several compounds can be used for treatment of RSV, AdV and HPIV infection. Ribavirin inhibits 

viral replication by several mechanisms, including inhibition of viral polymerase, inhibition of 5′ cap 

formation of mRNA, and inhibition of IMP dehydrogenase leading to a decrease of intracellular GTP 

concentrations [14]. There are no approved therapeutic agents against AdV infections. However, some 

broad spectrum antivirals, like ribavirin, and nucleoside analog cidofoir have been used in the 

treatment of severe Ad infections in immunocompromised hosts [11]. In addition, fusion inhibitors, 

antisense oligonucleoides and steroids were used for this purpose, none of them have been approved 

for clinical application. 

Previously, the low-molecular weight compound Ingavirin [6-[2-(1H-imidazol-4-yl)ethylamino]-5-

oxohexanoic acid, also known previously as Ingamine] was shown to have anti-influenza activity against 

the influenza viruses A(H3N2), A(H5N1) and B in an animal model [15,16] and against the pandemic 

strains of influenza virus A/California/04/2009 and A/California/07/2009 [17–19]. In experiments with 

IAV H1N1 Ingavirin decreased the virus-induced cytopathogenic effect in cell culture 50 to 79% 

compared to control cells. Mice infected with either H3N2 or H1N1 (2009) IAVs and treated with 

Ingavirin demonstrated lower mortality (approx. 40%) and increased average lifespan (approx. 4 days) 

compared to placebo-treated animals. Taken together, these data suggest that Ingavirin is a prospective 

tool for the treatment of IAV infections, in particular those caused by the pandemic viruses. Moreover, 

Ingavirin demonstrated activity in in vitro and in vivo experiments against human adenovirus and 

parainfluenza virus [20,21]. Nevertheless, the exact mechanism of its clinical efficacy is far from 

complete understanding. 

Here we summarize the results of studies into the protective activity of Ingavirin using the  

models of lethal influenza pneumonia caused by the pandemic influenza virus A(H1N1)2009, mild 

HPIV-caused pneumonia and disseminated adenovirus-induced infection and present a new data about 

its anti-viral activity regarding human respiratory viruses. Based on these results conclusions might be 

made about its range of activity and further application against specific diseases. 

2. Materials and Methods 

2.1. Compounds 

Ingavirin (6-[2-(1H-imidazol-4-yl)ethylamino]-5-oxohexanoic acid, Figure 1) was provided as a 

pure substance by the manufacturer (Valenta Pharmaceuticals, Moscow, Russia). Tamiflu (oseltamivir 

phosphate, LaRoche, Switzerland), 6-azacytidine (Institute of Molecular Biology and Genetics, Kiev, 

Ukraine) and ribavirin (ICN Biochemicals, USA) were used in the experiments as reference drugs. 
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Figure 1. Structure of Ingavirin. 
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2.2. Viruses 

Influenza virus A/California/07/09 (H1N1) was obtained from the collection of viruses from the 

Influenza Research Institute. Prior to the experiments, the virus was adapted to mice by three serial 

passages in the lung tissue of mice, followed by a subsequent passage through the allantoic cavity of 

10–12 day old chicken embryos and a final passage through mice [22]. Lung homogenate in nine 

volumes of sterile phosphate-buffered saline was used as an infecting material in further experiments. 

Human parainfluenza virus (hPIV) type 3 (strain HA1) and human adenovirus (AdV) type 5 were 

obtained from the collection of viruses from the Influenza Research Institute and propagated in  

MA-104 (ATCC CRL-2378) or HEp-2 (ATCC CCL-23) cells, correspondingly, at 36 °C in 5% CO2. 

2.3. Animals 

Female Balb/c mice, 16–20 grams, from the Rappolovo laboratory animal breeding farm were used 

in the experiments with influenza virus. Syrian hamsters bred in Influenza Research Institute were 

used for experiments with hPIV and AdV. The animal experiments were planned in accordance with 

the principles of laboratory animals care (Guide for the Care and Use of Laboratory Animals, National 

Academy Press: Washington, DC, USA, 1996) and approved by the Institutional Ethical Committee. 

2.4. Virus Titration 

Prior to the studies of the protective activity of Ingavirin in animals, mouse-adapted influenza virus 

was titrated for its lethal effect. For this purpose mice (10 in each experimental group) were inoculated 

intranasally under anesthesia with 50 µL of serial decimal dilutions (10−1 to 10−5) of the lung 

homogenate of virus-infected mice. The dilution that caused death of 50% of the animals in 14 days 

post infection (LD50) was calculated as described previously [23] and used for subsequent experiments. 

2.5. Protective Activity of INGAVIRIN 

For evaluation of the anti-influenza activity of Ingavirin in vivo, mice were infected with five LD50 

(20 mice) or one LD50 (30 mice) of the previously titrated virus (see “Virus titration” section). 

Ingavirin was diluted in saline to the doses of 15, 20 or 30 mg/kg body weight/day and applied orally 

via gavage once a day on day one, two, three, four and five post infection (p.i.). To study the effect of 

treatment schedule on the protective activity, separate groups of animals were treated twice (days 1 

and 2 p.i.) with 30 mg/kg Ingavirin following by three doses of 15 mg/kg (days 3, 4 and 5 p.i.). The 

total amount of Ingavirin received by animals in this group was equal to that in the group of 20 mg/kg. 

The reference drug Tamiflu (final dose 20 mg/kg body weight) was dissolved in saline and applied to 
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20 mice (five LD50) or 30 mice (one LD50) orally in a volume of 200 µL. Control animals were treated 

with sterile saline. 

Animals in all experimental groups were weighed daily. The mortality in each group of animals was 

calculated. Each group was checked daily for dead animals for two weeks post inoculation. Based on 

the data received, percent of mortality, index of protection (ratio of mortality in the control group over 

mortality in the experimental group) and mean day of death (MDD) were calculated. 

On day three p.i., ten mice from each group infected with one LD50 of the virus were sacrificed, 

their chest opened and lungs isolated. Five lungs were used for virus titration and five others for 

histological examination (see “Histological examination” section). 

In order to determine infectious titer of the virus in lung tissue, lungs were homogenized in ten 

volumes of sterile phosphate-buffered saline. Serial dilutions (10−1–10−7) were prepared from each 

homogenate. MDCK cells grown in 96-well plates were inoculated with 0.2 mL of each dilution and 

incubated at 36 °C for 48 hours in 5% CO2. After incubation, supernatant was harvested and tested for 

the presence of influenza virus by mixing the fluid in round- bottom wells with equal volumes of a 1% 

suspension of chicken erythrocytes in saline. Virus titer in the lungs was considered the final dilution 

when it caused a positive hemagglutination reaction in the well, and the virus titer is expressed in 

log10EID50/20 mg tissue. The activity of the compounds was evaluated by their ability to decrease the 

infectious titer of the virus in lung tissue. 

For the study of anti-hPIV activity of Ingavirin, four to five weeks old Syrian hamsters were infected 

with 0.05 mL (104 TCID50) of human parainfluenza virus (hPIV) intranasally as described in [24]. 

Ingavirin was used as described above. On day 3 and 7 p.i. animals were sacrificed, and their lungs used 

for virus titration in MA-104 cells and histological analysis (see below), respectively. Virus titer was 

determined by ELISA using anti-hPIV monoclonal antibodies (PPDP Ltd., St. Petersburg, Russia). 

Anti-AdV activity of the compound was tested as described previously [25]. 

2.6. Histological Examination 

Lungs of animals were fixed in 4% PBS-buffered formaldehyde, dehydrated in graded ethanol and 

embedded in paraffin. Four-micrometer sections were cut and stained with haemotoxylin-eosin. 

In case of influenza infection, cells of bronchial epithelium were divided into four morphologically 

distinct categories: (i) intact cells without signs of virus replication; (ii) cells with initial stages of 

formation of virus-specific inclusions; (iii) cells with advanced virus inclusions; and (iv) dead cells 

which looked like gaps between other cells with basal membrane denudation. The rates of each 

category of cells among cells of bronchial epithelial layer were calculated. The morphometric values 

were evaluated by two independent observers. 

3. Results 

3.1. Influenza Infection 

Inoculation of animals with an adapted influenza virus led to development of influenza pneumonia. 

The clinical signs of the disease were typical for severe influenza infection and included ataxia, 
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tremor, short breath, as well as decrease of water and food consumption leading to weight loss. On day 

15 p.i. death of 55–90% of infected animals was observed, depending on infecting dose of the virus. 

The protective activity of Ingavirin was evaluated when applied once a day for five days after virus 

inoculation. No non-specific mortality was observed in control groups of non-infected animals treated 

with saline and non-infected mice treated with Ingavirin. Ingavirin application resulted in decreased 

mortality (to 18–67%) as well as an increase in the mean day of death (1.2–4.1 days) compared to the 

control animals (depending on the dose of virus and compound). Mice treated with the reference 

compound Tamiflu also demonstrated significantly lower mortality (index of protection 80%) and 

prolongation of mean lifespan (up to 5.4 days) compared to control values (Table 1). In addition, 

treatment of the animals with Ingavirin, similarly to the reference compound Tamiflu, resulted in 

normalization of weight dynamics of the animals (Figure 2), leading to similar weight profiles 

compared to non-infected animals. 

Table 1. Protective activity of Ingavirin against influenza A (H1N1) 2009. p < 0.05 values 

are indicated in bold. 

Preparatio
Virus 

dose, 

LD50 

Survive

d/total 

infected 

Mortality, 

% 

Medium day of 

death * (comparing 

to control) 

Index of 

protection,

% 

Virus titer in the lungs 

(log10EID50/20 mg 

tissue) on day 3 p.i. 

Degree of lung 

edema and 

infiltration 

Ingavirin  

20 mg/kg 

1 11/20 45 10.9 ± 0.7(+1.2) 18 3.8 ± 0.3 * 1.5 ± 0.1 * 

5 10/20 50 9.1 ± 0.9 (+3.4) 44 N/D ** N/D 

Ingavirin  

30 mg/kg 

1 16/20 20 12.9 ± 0.8(+3.2) 64 3.5 ± 0.3 1.5 ± 0.2 

5 14/20 30 9.8 ± 0.5 (+4.1) 67 N/D N/D 

Ingavirin 

30/15 mg/kg 

1 16/20 20 13.4 ± 0.7 (+3.7) 64 3.4 ± 0.3 1.4 ± 0.1 

5 14/20 30 12.0 ± 0.5 (+6.3) 67 N/D N/D 

Oseltamivir 

20 mg/kg 

1 18/20 10.0 13.1 ± 0.8(+3.4) 81 2.6 ± 0.3 1.7 ± 0.2 

5 15/20 25.0 11.1 ± 1.0(+5.4) 72 N/D N/D 

Control  

(no drugs) 

1 9/20 55.0 9.7 ± 1.0 --- 5.1 ± 0.2 2.7 ± 0.1 

5 2/20 90.0 5.7 ± 0.6 --- N/D N/D 

* mean ± SEM; ** Not determined. 

Figure 2. Dynamics of body weight of mice in the course of pneumonia caused by 

influenza virus A/California/7/09 (H1N1)v. 
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As shown by virus titration from lungs of mice, on day three p.i. the virus replicated in the lung 

tissue up to 105.1 EID50/20 mg tissue. Application of the reference compound Tamiflu decreased the 

viral titer approximately 320-fold (102.6 EID50/20 mg tissue). Treatment of the animals with Ingavirin 

also resulted in a decrease of the virus’ titers (approximately 103.5 EID50/20 mg), which is statistically 

identical to the activity of oseltamivir (Table 1). 

In order to evaluate the effect of Ingavirin on the structure of the lung tissue, morphology analysis 

was performed on day three p.i. Lungs of virus-infected mice were consolidated and edematous. All 

infected mice had exudative diffuse alveolar damage with interstitial edema, fibrinous exudates in their 

alveoli, inflammatory infiltration, bronchiolar epithelial necrosis and desquamation. Cells of bronchial 

and bronchiolar epithelium contained viral inclusions or were absent with denudation of the basal 

membrane [Figure 3(a)]. 

Application of Ingavirin, similar to the reference compound Tamiflu, resulted in normalization of 

lung tissue structure, in particular, restriction of edema and alveolar damage, decrease in the amount of 

debris in the bronchial lumen and protection of bronchial epithelium from death [Figure 3(b), Table 1]. 

To study the mechanism of protective activity of Ingavirin, we looked more closely to the cells of 

bronchial epithelium that are considered a primary targets for influenza virus. Morphometric analysis 

of cells revealed that almost 100% of epithelial cells of intact mice were represented by intact cells. 

Figure 3. Pathologies of mice intranasally inoculated with mouse-adapted influenza virus 

A/California/7/09 (H1N1)v on day 3 p.i. (a) Lungs of a placebo-treated mouse. Large area 

of pneumonia with intense exudates in bronchial lumen, severe neutrophilic-to-histiocytic 

alveolitis; (b) Mild lymphocytic peribronchitis with mild alveolitis in a mouse treated with 

30 mg/kg body weight of ingavirin. Cells of bronchial epithelium are intact, mild exudates 

in bronchial lumen; (c) Mild lymphocytic peribronchitis with alveolitis in a mouse treated 

with 20 mg/kg oseltamivir; (d) Lungs of intact mice. No signs of inflammation or cell 

destruction. Hematoxylin-eosin, ×200. 

(a) (b) 
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Figure 3. Cont. 

(c) (d) 

Inoculation with influenza virus led to increasing of the rate of cells of three other groups (i.e., cells 

with initial inclusions, advanced inclusions and dead cells), suggesting a strong cytotoxic action of the 

virus. Application of both Ingavirin and reference compound oseltamivir strongly decreased the 

number of dead cells and increased the rate of intact cells of bronchial epithelium. From these results 

we suggest that this compound is able to protect cells against virus- induced damage (Figure 4). 

Figure 4. Cytoprotective activity of Ingavirin in cells of bronchial epithelium after 

infecting with mouse-adapted influenza virus A/California/7/09 (H1N1)v (day 3 p.i.). 
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3.2. Parainfluenza Virus Infection 

Infecting of Syrian hamsters with human parainfluenza virus (hPIV) results in non- fatal mild 

bronchitis, bronchiolitis and pneumonia. The virus can be recovered from the lungs on day 3 p.i., and 

specific tissue damage can be observed on day 7. 

As shown by virus titration, application of both ingavirin and reference compound ribavirin led to 

reduction of infectious titer of hPIV in lung tissue. Ribavirin demonstrated the highest activity in 

decreasing the titer although both doses of Ingavirin also led to statistically significant reduction (Table 2). 

Table 2. Infectious activity of hPIV in lung tissue of Syrian hamsters after application  

of Ingavirin. 

Drug Virus titer (log10EID50/20 mg tissue) p 

Ingavirin 30 mg/kg 3.2 ± 0.2 0.018 
Ingavirin 30/15 mg/kg 2.7 ± 0.3 0.016 
Ribavirin 2.3 ± 0.3 0.001 
Control (no drugs) 3.8 ± 0.2 1.000 

Hamsters infected with hPIV showed no observable evidence of illness prior to sacrifice, but 

histologically there was consistent production of pneumonia. Lung lesions consisted of scattered 

endobronchial exudates composed of mononuclear and polymorphonuclear cells, peribronchial and 

perivascular round cell infiltrates, and wide areas of interstitial pneumonia. Bronchial epithelium  

had a specific appearance containing groups of tall giant cells protruding into the bronchial  

lumen [Figures 5(a,b)]. Animals treated with Ingavirin and ribavirin demonstrated almost normal lung 

tissue architecture with few infiltrating cells [Figures 5(c,d)]. 

Figure 5. Structure of lung tissue of Syrian hamsters on day 7 after inoculation with  

hPIV-3 with (c,d) or without (a,b) treatment with Ingavirin. a, с—Alveoli, b, d—Bronchial 

epithelium. Hematoxylin-eosin, ×100 (a), ×400 (b,c,d). 

(a) (b) 
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Figure 5. Cont. 

(c) (d) 

3.3. Human Adenovirus Infection 

As human adenoviruses do not cause airborne respiratory infection in animals, we studied the  

anti-viral activity of ingavirin using previously developed model of disseminated adenoviral infection of 

newborn Syrian hamsters caused by human adenovirus type 5 [25]. Similar to hPIV infection, protective 

activity was evaluated by virus titration in target organs and histological analysis of tissue architecture. 

Subcutaneous infecting of newborn Syrian hamsters resulted in the replication of the virus in lungs 

and livers of animals. The results of virus titration in HEp-2 cells on day three p.i. are summarized  

in Table 3. 

Table 3. Infectious activity of AdV in liver and lungs of Syrian hamsters after application 

of ingavirin. 

Drug, dose (mg/kg/day) 
Virus titer in liver  

(log10EID50/20 mg tissue) 
Virus titer in lungs 

(log10EID50/20 mg tissue) 

Ingavirin 15 3.8 ± 0.1 (p = 0.099) 4.1 ± 0.3 (p = 0.319) 
Ingavirin 30 3.4 ± 0.2 (p = 0.022) 3.5 ± 0.2 (p = 0.016) 
Ingavirin 45 3.7 ± 0.2 (p = 0.110) 3.7 ± 0.3 (p = 0.088) 
6-azacytidine 2.7 ± 0.3 (p = 0.003) 2.9 ± 0.4 (p = 0.000) 
Control (no drugs) 4.3 ± 0.3 4.5 ± 0.2 

As can be seen, treatment of AdV infection with reference compound 6-AC resulted in restriction of 

virus replication both in liver and lungs of animals that is in agreement with our previous results [25]. 

Application of ingavirin led to moderate (approx. one decimal order), but statistically significant 

reduction of virus titer both in liver and lungs of animals. 

Histological investigation of liver of infected animals revealed foci of necrosis. Morphologically, 

they were the areas of destruction of the parenchyma caused by specific lesion of hepatocytes and  

non-specific destruction of tissue due to a local inflammatory reaction. Specific lesions of liver cells 

were manifested in the augmentation of cell nuclei, their deformation and appearance of eosinophylic 

and basophylic virus-specific nuclear inclusion bodies. The reactive alterations of tissue were due to 
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inflammatory destruction of hepatocytes and tissue infiltration with leukocytes. Infected animals 

treated with ingavirin had smaller foci of inflammation and intact-looking hepatocytes, in contrast to 

highly vacuolized hepatocytes in control animals (Figure 6). 

Figure 6. Pathology of AdV-induced hepatitis in the liver of newborn Syrian hamsters on 

day 3 p.i. Large focus of inflammation with numerous AdV-infected cells (arrowheads), 

vacuolization of hepatocytes (a,b) in control animals, small focus of inflammation and 

intact parenchyma (c) in Ingavirin-treated animals. Hematoxylin-eosin, ×400. 

 
(a) (b) (c) 

In order to quantify the protective effect а Ingavirin, we measured the size of the foci of necrosis in 

liver and counted the number of AdV-infected cells within each focus (Table 4). 

Table 4. Effect of Ingavirin on the course of AdV-induced hepatitis in newborn  

Syrian hamsters. 

Drug, dose 
(mg/kg/day) 

Volume of focus, mm3 × 10−5 Number of infected cells within one focus 

Mean ± SE p Mean ± SE p 

Ingavirin 15 53.2 ± 5.3 0.000 2.9 ± 0.9 0.000 
Ingavirin 30 50.8 ± 4.4 0.000 1.9 ± 1.5 0.000 
Ingavirin 45 54.3 ± 5.0 0.000 2.8 ± 2.2 0.000 
Control (no drugs) 84.4 ± 6.9 1.000 7.1 ± 0.3 1.000 

As shown by morphometry analysis, application of Ingavirin decreased mean size of foci of  

virus-induced inflammation and strongly reduced the number of infected cells. Interestingly, the effect 

of higher dose of the drug (45 mg/kg/day) was less than that of lower dose (30 mg/kg/day) suggesting 

a specific mode of this compound’s activity. 
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4. Discussion 

In the present study, we showed a protective effect of the low-molecular weight compound 

Ingavirin against lethal influenza virus infection caused by the pandemic influenza virus A (H1N1) in 

mice and non-fatal pathologies of Syrian hamsters caused by human parainfluenza virus and human 

adenovirus. Effects of the dose on the protective activity of the compound and virus replication in 

tissue were investigated. The protective action of Ingavirin was shown as a reduction of infectious titer 

of the virus in the lung tissue, prolongation of life of infected animals, normalization of weight dynamics 

in the course of disease, lowering of mortality of treated animals compared to a placebo control and 

normalization of lung and liver tissue structure. In case of influenza infection, the protective activity of 

Ingavirin appeared similar to that of the reference compound Tamiflu. 

In our experiments, Ingavirin demonstrated the protective activity against lethal influenza 

pneumonia in mice. At some doses, the protective effect was equal to the activity of oseltamivir, which 

is an internationally accepted drug proved to be effective against this IAV. In general, our results are in 

good agreement with previously obtained data [15–19] where Ingavirin was shown to have a protective 

effect against the influenza viruses A and B. 

Krug and Aramini [26] suggested that two possible domains of the influenza virus nucleoprotein 

(NP), one located in a tail loop and another in an RNA-binding groove found between the head  

and body domains at the exterior surface of the NP trimer, represent the potential antiviral targets.  

The tail loop-located domain is crucial for oligomerization of NP that is, in turn, necessary for  

efficient transcription and replication of viral genome. Inactivation of this domain, therefore, might be 

effective for suppressing the virus replication. Indeed, some experiments suggest Ingavirin targets  

the influenza nucleoprotein (NP). In a recent study [27] ingavirin was shown to interact with the 

influenza virus NP, thus preventing the NP oligomerization necessary for viral replication. In third 

study, several analogues of mycalamide A were identified as NP-directed inhibitors of influenza virus 

replication [28]. These compounds were shown to bind to the N-terminal 13-amino acid tail, which 

mediates the nuclear transport of NP and its binding to viral RNA. Moreover, Kao et al. [29] reported 

the identification of a small-molecule compound, nucleozin, that triggers the aggregation of NP and 

inhibits its nuclear accumulation. Nucleozin impeded influenza A virus replication in vitro with a 

nanomolar concentration and protected mice challenged with lethal doses of avian influenza A H5N1. 

These data suggest that compound binding to this target may inhibit viral replication by inhibiting the 

functions of the NP. Neither mycalamide A analogues nor nucleozin demonstrate no structural 

similarity with Ingavirin, leading us to hypothesize that other domain(s) of the viral NP may be 

involved in the interaction with Ingavirin. 

From another hand, application of Ingavirin was shown to result in change of the morphology of 

virions detected in bronchoalveolar lavage of infected mice [30]. Control animals produced mostly 

spherical virions while in Ingavirin-treated animals presumably filamentous particles of reduced 

infectivity were formed. These results suggest that ingavirin might interfere with the process of virus 

assembly and/or budding leading to reduction of viral load. 

In our study the activity of oseltamivir appeared lower than in similar experiments of Smee et al. [31]. 

This might be connected with a higher virus dose, different virus used in our experiments and different 

schedule of application of the drug (once a day instead twice a day in [31]).At the same time, direct 
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anti-viral effects of Ingavirin detected by a decrease of the virus’ infectious titer in lung tissue 

appeared ten times less than that of Tamiflu despite similar level of protection from lethality (Table 1). 

This contradiction could indicate that other mechanisms, in addition to a direct anti-viral activity, 

might contribute to the resulting protection of animals from lethality caused by the IAV. 

Influenza virus infection ranges in severity from an asymptomatic infection to a serious illness with 

systemic features. Severe influenza is manifested by virus-specific reactions with further development 

of reactive processes. These processes are induced by the replicating virus in the target cells and 

realized through host mechanisms, including immune reactions, oxidative stress and other free radical 

processes, enhanced proteolytic activity, sharp elevation of the level of proinflammatory cytokines, 

and more [32]. 

In clinics, one of the main reasons for severe and complicated influenza pneumonia, including fatal 

cases, is late and/or inadequate treatment [33,34]. In these cases, the course of the disease is driven by 

mechanisms that are initially induced by the virus but ultimately realized by the host, including, in 

particular, severe inflammation (“cytokine storm”) [35–37]. Experiments using influenza virus-infected 

knockout mice with inactivated genes in the inflammatory pathways, such as interleukin 1α/β, 

macrophage chemokine receptors CCR5 and CCR2, cyclooxygenase 1 and 2 [38–40] have clearly 

demonstrated that in addition to the level of virus’ replication in the lungs, the intensity of the host 

reactions contribute significantly to the course and outcome of the disease. In severe cases of influenza, 

therefore, both direct anti- viral and pathogenetic drugs should be included into complex therapy, in 

particular those compounds that restrict the cytokine storm, lung edemas, inflammation and tissue 

damage [41]. For example, recently the high protective activity of 7-hydroxycoumarin (7-HC) was 

demonstrated [42]. 7-HC was demonstrated to possess anti-viral properties owing to its ability to 

decrease the level of proinflammatory cytokines in infected animals, thus alleviating the severe 

influenza infection. At the same time 7-HC did not reduce the level of virus replication in plaque 

reduction assays suggesting that its protective activity, including decrease of virus replication in mouse 

lungs, is of a complex nature and may be mediated by cell signaling and reactive pathways. One could 

suggest that, in addition to the ability to directly decrease the level of virus replication in the  

lungs (Table 1), Ingavirin might have similar properties based on the results of the mouse lung 

morphology examinations showing that Ingavirin treatment significantly reduced the degree of tissue 

damage, inflammation and edema (Figure 3, Table 1). Further studies into the effects of Ingavirin on 

different pathogenetic pathways would be useful for understanding its mechanism of activity. Ingavirin 

should be considered as an important part of anti-influenza prophylaxis and therapy, in particular in 

severe cases of the disease. 

In our experiments Ingavirin also demonstrated anti-viral activity against two other viruses used, 

hPIV and AdV [19,20]. As these viruses are phylogenetically distinct from each other and there are no 

viral components common to all three viruses used in the study, it may be concluded that this drug 

targets the components and pathways responsible for development of cell and tissue pathology during 

viral infection. Indeed, in all three cases it demonstrated high degree of cytoprotection and ability to 

normalize the architecture of the tissue. Its application prevented the death of influenza virus-infected 

cells of bronchial epithelium, hPIV-induced cytopathology in lungs and virus-induced vacuolization of 

hepatocytes during AdV infection in hamsters. Moreover, in our previous experiments [21] we 

demonstrated the ability of Ingavirin to prevent AdV-induced cell damage in culture. Despite 
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formation of typical intranuclear virus-specific inclusions, Ingavirin-treated cells did not develop 

vacuoles in cytoplasm and other morphological signs of cytopathogenicity. Therefore, in addition to 

other mechanism(s) of anti-viral action, Ingavirin possesses a cytoprotective activity that prevents 

destruction of infected cells and maintains the function of the target organ thus minimizing the  

virus-induced tissue damage and toxicity symptoms in the course of disease. 

It should be noted that no toxicity of Ingavirin was observed at the doses up to the doses of  

3,000 mg/kg. Also, no signs of embryotoxicity was observed in previous studies [43]. For comparison, 

LD50 for Tamiflu was estimated as 100–250 mg/kg depending on the route and schedule of inoculation 

and species of animals [44]. Moreover, in clinical trials Ingavirin did not demonstrate any side effects 

when applied to influenza-infected patients [45]. Ingavirin, therefore, can be considered as non-toxic 

compound with low risk of overdose. 

5. Conclusions 

Taken together, our data suggest that Ingavirin is a non-toxic broad spectrum antiviral with 

complex mechanism of action. Further study of fine mechanism of its protective activity would allow 

to optimize the drug structure and probably develop new class of compounds for prophylaxis and 

treatment of viral infections. 
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